Heapify

CS 251 - Data Structures and
Algorithms

| Note:
Slides complement the
discussion in class

O

@) O

Heapify Table of Contents
Transform an array into a

binary heap

Heapﬁy

Transform an array into a binary heap

Think about this

A single insert into a binary heap is 0 (log,(n)).
Inserting n itemsis O(nlog,(n)).

. If we have an array with n items to be inserted in a binary heap, can we
build the binary heap better than 0(nlog,(n))?

"Algorithm 232 - Heapsort", J.
W. J. Williams, ""Communications
of the ACM“, 1964

https://dl.acm.org/doi/10.1145/512274.512284

ALGORITHM 230

MATRIX PERMUTATION

J. Booruroyp (Reed 18 Nov. 1063)

English Electric-Leo Computers, Kidsgrove, Stoke-on-
England

procedure wnatrizpern (b s dnp); value n; real ab;
integer array 5,d; Integer j,kn,p;

comment & progedure using Jensen’s devioe which exchanges
rows or columns of a matrix to achieve reurrangement specified
by the permutation veetors s,d(1:n]. Elements of & speeify the
original souree loeations while elements of d specify the desired
destination locations, Normally o and b will be called as sub-
seripted variables of the same array. The parameters j,& nom-
inate the subseripts of the dimension affected by the permuta-
tion, p is the Jensen parameter. As an example of the use of this
procedure, suppose r,oflin] to eontain the row and eolumn sub-
seripts of the successive mabrix pivots used in & matrix inver-
sion of am array afln,lml; ie. rill, ell] are the relative sub-
seripts of the first pivat 7[2], «{2] those of the second pivot and
50 on. The twa ealls

mairizperm (alj,pl, alk,pl, j,k:7,cn,p)
and matrizperm (alp,j), alp,kl, ik,e.0n,p)
will perform the required rearrangement of rows and eolumns
respectively;

begin integer array tag, loc{l:n]; integeri,l; roal w;

comment set up initial veetor tag number and address arrays;
fori := 1ste n do tagli] == locfi] = i;

comment start permutation;
for i := 1 step L until i do

begin £ 1= olil; j = loclty k= dfil;
if j#k then begin for p := 1step I until n do

end i loop
end matrizpern

ALGORITHM 231

MATRIX INVERSION

J. Booraroyp (Reed 18 Nov. 1963)

English Electric-Leo Computers, Kidsgrove, Stoke-on-
Trent, England

procedure matrizinort (a,n,eps,singular); value neps; are
ray a; integern; real eps; label singular;

comment inverts a matrix in its own space using the Gauss-
Jordan method with complete matrix pivoting. Le., at oach
stage the pivot has the largest absolute value of any element in
the remaining matrix. The coordinates of the auocessive matrix
pivots used at each stage of the reduction are recorded in the
successive element positions of the row and column index
vectors r and . These are later called upon by the provedure
niatrizperm which rearranges the rows and columns of the

Volume T/ Number 6 / June, 1964

G. E. FORSYTHE, Editor

matrix. If the matrix is singular the procedure exits Lo an appro-
priate label in the main program,
begin integer ik, pivi,piv,p; real pivol; integer array
rell s
comment set row and column mdcx veetors;
for i := 1 step L until n do
comment find initial pivat;
for i := 1 step 1 until n do for j ;= 1 step | until n do
if abs (u[iﬂ] > abs {apivi,pis]) then begin pivi := i;
pinj
comment start reduntlnn‘
for i := 1 step 1 until ndo
beginl i= rfil; rli] o= ripivil; ripiv] =
eli] = elpivjl; clpivgl] = 1;
ifeps > ubs (afrfil,cli]]) then
Dbegin comment hore include an appropriate output pro-
cedure to record i and the current values of rilim] and
cu.n); g0 1o singular end;
step —1 untili-+1,i—1step —1 until 1 do alrfi],e[f])
= ﬂ[ff‘hfb]]/ulr[cl clill; alriileli]] == 1alrlil,elill;
pivol

o= il

for & lubepl until -1, i+1 step L until n do
begln for j := nstep —1 until i+1,i—1 step —1 until1 do
begin afrlk] vaIJ o= alrlk)eljll ~ alrli],eli)] X alrlklefl];
i k>i A joi A abs (..[rl):l sl.a]l) > abs(pivol) then
begin pivi i= k; pinj
pivod = alr]l nd conditionsl
end slaop;
alrlklefil] := —alrlél,clé]] X afrlk]cli]]
end Koo
end iloop and reduction;
comment rearrange rows; matrizpern (alj,plalk,plik,re,np);
comment rearrango columna;
matrizperm (alp.jl.alpkLikcrn.p)
end matrizinvert

[Epiton’s Note. On many compilers matrizinvert would run much
faster if the subseripted variables 1], clil, r[k] were replaced by
simple integer variables ri, ci, 7k, respeatively, inside the j loop.—
G.EF.]

ALGORITHM 232

HEAPSORT

J. W, J. Wiepiams (Reed 1 Oct. 1963 and revised, 15
Teb. 1964)

Elliott. Bros. (London) Lid., Borchamwood, Herts, Eng-
land

comment ‘Tha following procedures are related to TREESORT
iR. W. Floyd, Alg. 113, Comm. ACM 5 (Aug. 1962), 434, and
A. F. Kaupe, Jr., Alg. 143 and 144, Comm. ACM & (Dee. 1062),
604] but avoid the use of pointers and so pressrve storage space.
All the procedures operate on single ‘word items, stored as
elements 1 10 n of the array A. The elements are normally so
arranged that Ali]S ALl for 2575 n, 1=7+2. Such an nrrange-

Communications of the ACM 7

https://dl.acm.org/doi/10.1145/512274.512284

algorith maxchild(A:array, n:Zsg, i:Zsg) = Zsg
lc « leftchild(i)
if 1lc >= n then
return n
end if
rc « rightchild(i)
if rc >= n then
return 1lc
end if
if A[lc] > A[rc] then

Max Childand | -«

end if

Sift Down L=

algorith siftdown(A:array, n:Zsg, i:Zsq)
m < maxchild(A, n, i)
while m < n and A[i] < A[m] do
swap(A, i, m)
iem
m < maxchild(A, n, i)
end while
end algorithm

Traditional approach (inserting one item at a time)

©

(@n)

1 2 3§ 4 5

—_—

2 3 4 5

—_—

2 3 4 5

algorith heapify(A:array, n:Zsg)
for i from floor(n/2) - 1 to © by -1 do
siftdown(A, n, i)
end for
end algorithm

It is convenient to have n (i.e., the size of the array) as an argument for heapify. It will come in handy later when discussing Heapsort.

Build heap: [4, 6,3, 5,7, 1]
heapify (transform an array into a binary heap)

0 1 2 3 4 5

A

6

3

)

7

1

OOOOOO

@@@@Gg>

0606

“?@é@

(&2

(n]

e kel

10

Heapify Remarks

Also known as Bottom-Up (start at the leaves).
Considers the items between indices 0 and El -1

Call Sink/Swim/Sift Down on each node.

Heapify builds the binary heap in 0(n).

ll

~Done, Sort Of

Do you have any questions?

CREDITS: This presentation template was created by Slidesgo, including
icons by Flaticon, infographics & images by Freepik and illustrations by
Stories

12

https://slidesgo.com/
https://www.flaticon.com/
https://www.freepik.com/
https://stories.freepik.com/

	Slide 1: Heapify
	Slide 2: Note: Slides complement the discussion in class
	Slide 3: Table of Contents
	Slide 4: Heapify
	Slide 5: Think about this
	Slide 6: "Algorithm 232 - Heapsort“, J. W. J. Williams, "Communications of the ACM“, 1964
	Slide 7: Max Child and Sift Down
	Slide 8
	Slide 9: Heapify
	Slide 10
	Slide 11: Heapify Remarks
	Slide 12: Done, Sort Of

